Thesis defence by Christian Spoerry (UmU) on “Streptococcal Immunoglobulin degrading Enzymes”, 1 June 2017

Christian Spoerry (Umeå University, Dept. of Molecular Biology) will defend his thesis entitled "Streptococcal Immunoglobulin degrading Enzymes of the IdeS and IgdE Family" 1 June 2017 at 1 p.m. Venue: Major Groove, Building 6L, Norrlands Universitetssjukhus.

Opponent: Professor Heiko Herwald, Dept. of Clinical Sciences, Division of Infection Medicine, Biomedical Center (BMC), Lund University, Sweden

​Bacteria of the genus Streptococcus are common asymptomatic colonisers of humans and animals. As opportunistic pathogens they can however, depending on their host’s immune status and other circumstances, cause mild to very severe infections. Streptococci are highly intertwined with specific host species, but can also cause zoonosis or anthroponosis in more uncommon hosts. Prolonged and reoccurring infections require immune evasion strategies to circumvent detection and eradication by the host’s immune defence. A substantial part of the immune defence against bacterial pathogens is mediated by immunoglobulins. This thesis is based on work to identify and characterise immunoglobulin degrading enzymes secreted by different Streptococcus species as a means to sabotage and evade antibody-mediated immune responses.

Stoichiometric and kinetic analysis of the IgG degrading enzyme IdeS from the important human pathogen S. pyogenes revealed that IdeS cleaves IgG, opposed to previous publications, as a monomer following classical Michaelis-Menten kinetics.

The IdeS homologue of S. suis, IdeSsuis, did however not cleave IgG, but was highly specific for porcine IgM. S. suis was found to possess yet another protease, IgdE, capable of cleaving porcine IgG. Both of these proteases were shown to promote increased bacterial survival in porcine blood during certain conditions.

IgdE is the founding member of a novel cysteine protease family (C113). Novel streptococcal members of this protease family were shown to specifically degrade certain IgG subtypes of the respective Streptococcus species’ main host. The observed substrate specificity of IgdE family proteases reflects the host tropism of these Streptococcus species, thereby giving insights into host-pathogen co-evolution.

The abundance of immunoglobulin degrading enzymes among Streptococcus species indicates the importance of evasion from the antibody mediated immune responses for streptococci. These novel identified immunoglobulin degrading enzymes of the IdeS and IgdE protease families are potential valid vaccine targets and could also be of biotechnological use.